Abstract

Piers with back-to-back stems or columns and piers for which part of the foundation becomes exposed as a result of the development of scour over large periods of time or because of severe flood events are fairly common at bridge waterways. The present paper uses eddy-resolving numerical simulations to study flow and turbulence structure at piers of complex shape and/or with multiple components. In particular, the study considers cases with one and two back-to-back pier columns for which the section of the main column is neither circular nor rectangular. In addition to a design case for which the foundation of each pier column is submerged, the study analyzes a case when scour exposes part of the foundation of the main column. The results show that the shape and size of the pier column have a significant effect on the spatial and temporal distributions of the bed friction velocity induced by the horseshoe vortex system. The large-scale shedding behind the main column greatly influences flow structure and increases bed friction velocity around the downstream column for piers with two back-to-back columns that are aligned with the incoming flow direction. The present study shows that the presence of large-scale unsteady coherent structures in the vicinity of the bed around piers of complex shapes results in very complex distributions of the bed friction velocity and in large-scale temporal oscillations of the bed friction velocity. The results of eddy-resolving simulations strongly suggest the need to account for the effect of these large-scale oscillations around the mean value when bed friction velocity distributions are used to estimate the flux of entrained sediment in movable bed simulations that do not resolve the large-scale turbulent flow structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call