Abstract
AbstractA prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee slope angles for which flow separation is absent or intermittent. Here we present a laboratory investigation where we systematically varied the dune lee slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee slopes of 10°, 20°, and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high‐frequency, vertical profiles collected with a Laser Doppler Velocimeter. We show that the temporal and spatial occurrence of flow separation decreases with dune lee slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee slopes. Aperiodic, strong ejection events dominate the shear layer but decrease in strength and frequency for low‐angle dunes. Flow resistance of dunes decreases with lee slope; the transition being nonlinear. Over the 10°, 20°, and 30° dunes, shear stress is 8%, 33%, and 90% greater than a flat bed, respectively. Our results demonstrate that dune lee slope plays an important but often ignored role in flow resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.