Abstract

Flow structure of incompressible fluid in a Ranque–Hilsch vortex tube was studied experimentally. A pattern of streamlines in the whole volume of the vortex tube was constructed from the velocity distributions measured using laser Doppler anemometry. The radial distributions of the azimuthal velocity in the Ranque–Hilsch vortex tube are shown to be different from those in a vortex tube with a tangential inlet and a single central exit orifice. Based on the obtained structure of the flow, a simple qualitative model is proposed to explain the physical mechanism of the temperature separation effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.