Abstract
Numerical prediction is reported of thermohydraulic characteristics of square ducts equipped with dual and quadruple twisted tapes (DTs and QTs) with different configurations. The studied cases include (1) dual co-tapes (Co-DTs), (2) dual counter-tapes (C-DTs), (3) diagonal dual counter-tapes (C-DDTs), (4) diagonal dual co-tapes (Co-DDTs), (5) quadruple co-tapes (Co-QTs), (6) quadruple counter-tapes (CC-QTs) and (7) quadruple counter-tapes (PC-QTs). The results of these cases are compared with those of a smooth duct (a duct without tape insert) and also the one with a single tape (ST). The prediction involves using the RNG k-e turbulent model under constant wall heat flux condition in the turbulent flow regime for the Reynolds number ranging from 6000 to 14000. The prediction indicates that thermohydraulic characteristics in ducts with twisted tape are strongly dependent on number and configuration of tapes. However, the influence of tape number is more significant than that of tape configuration. Heat transfer and friction increase as tape number increases. QTs offer superior heat transfer to DTs but their thermal performance factors are lower. For the tape inserts determined, DTs with diagonal configuration (Co-DDTs and C-DDTs) is the best design as the tapes offer the best thermal performance. The highest thermal performance factors given by Co-DTs, Co-DDTs, C-DTs, C-DDTs, Co-QTs, PC-QTs and CC-QTs, are around 1.21, 1.35, 1.25, 1.38, 1.08, 1.18, and 1.22, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.