Abstract

Flow structure and flame stability to be formed inside a micro can combustor, with a baffle plate having a central fuel nozzle and multi air holes located annularly were investigated experimentally. The structures of the isothermal flow and the reacting flow behind the baffle plate are measured by using a particle image velocimetry (PIV). The result shows that generation of the flow recirculation region enhances the mixing most effectively and is useful to make the combustion chamber compact. However, for the reacting flow condition, the flow structure behind the baffle plate will be changed drastically. The flame stabilization mechanisms have to be discussed in terms of local conditions of fuel and air mixing, flame propagation speed, and so on. These local structures seem to play an important role for the lifted flame location and stability of this type of burner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.