Abstract

We present an experimental study of Rayleigh–Bénard convection using liquid metal alloy gallium-indium-tin as the working fluid with a Prandtl number of $Pr=0.029$ . The flow state and the heat transport were measured in a Rayleigh number range of $1.2\times 10^{4} \le Ra \le 1.3\times 10^{7}$ . The temperature fluctuation at the cell centre is used as a proxy for the flow state. It is found that, as $Ra$ increases from the lower end of the parameter range, the flow evolves from a convection state to an oscillation state, a chaotic state and finally a turbulent state for $Ra>10^5$ . The study suggests that the large-scale circulation in the turbulent state is a residual of the cell structure near the onset of convection, which is in contrast with the case of $Pr\sim 1$ , where the cell structure is transiently replaced by high order flow modes before the emergence of the large-scale circulation in the turbulent state. The evolution of the flow state is also reflected by the heat transport characterised by the Nusselt number $Nu$ and the probability density function (p.d.f.) of the temperature fluctuation at the cell centre. It is found that the effective local heat transport scaling exponent $\gamma$ , i.e. $Nu\sim Ra^{\gamma }$ , changes continuously from $\gamma =0.49$ at $Ra\sim 10^4$ to $\gamma =0.25$ for $Ra>10^6$ . Meanwhile, the p.d.f. at the cell centre gradually evolves from a Gaussian-like shape before the transition to turbulence to an exponential-like shape in the turbulent state. For $Ra>10^6$ , the flow shows self-similar behaviour, which is revealed by the universal shape of the p.d.f. of the temperature fluctuation at the cell centre and a $Nu=0.19Ra^{0.25}$ scaling for the heat transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call