Abstract

Next-generation sequencing (NGS) methods have been introduced for immunoglobulin (IG)/T-cell receptor (TR) gene rearrangement analysis in acute lymphoblastic leukemia (ALL) and lymphoma (LBL). These methods likely constitute faster and more sensitive approaches to analyze heterogenous cases of ALL/LBL, yet it is not known whether gene rearrangements constituting low percentages of the total sequence reads represent minor subpopulations of malignant cells or background IG/TR gene rearrangements in normal B-and T-cells. In a comparison of eight cases of B-cell precursor ALL (BCP-ALL) using both the EuroClonality NGS method and the IdentiClone multiplex-PCR/gene-scanning method, the NGS method identified between 29% and 139% more markers than the gene-scanning method, depending on whether the NGS data analysis used a threshold of 5% or 1%, respectively. As an alternative to using low thresholds, we show that IG/TR gene rearrangements in subpopulations of cancer cells can be discriminated from background IG/TR gene rearrangements in normal B-and T-cells through a combination of flow cytometry cell sorting and multiple displacement amplification (MDA)-based whole genome amplification (WGA) prior to the NGS. Using this approach to investigate the clonal evolution in a BCP-ALL patient with double relapse, clonal TR rearrangements were found in sorted leukemic cells at the time of second relapse that could be identified at the time of diagnosis, below 1% of the total sequence reads. These data emphasize that caution should be exerted when interpreting rare sequences in NGS experiments and show the advantage of employing the flow sorting of malignant cell populations in NGS clonality assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call