Abstract

The estimation of maximum travel distance of flow slides is an important topic to assess the consequence of natural disasters caused by landslides. During debris transportation, dissipation rules of pore-water pressure determine movement properties of flow slides. Based on 1-D Terzaghi consolidation theory, expressions of excess pore-water pressure with three cases of initial conditions are deduced and are programmed using Mathematica® language. Furthermore, the factors affecting the distribution of pore-water pressure are studied using nondimensional method interactively, such as z/h, ub/ua, and Tv, which are fairly significant to investigate soil consolidation during the movement of flow slides. On the basis of the sliding-consolidation model first provided as reported by Hutchinson (Can. Geotech. J. 23(2):115-126, 1986), equations of pore-water pressure, velocity, and travel distance of flow slides are obtained and the physical quantities are coded as mathematical functions using Mathematica® language characterized by its user-friendly interfaces to study run-out properties of flow slides very easily. The program can be used to compute velocity of flow slide, time, and pore-water pressure at a certain position, and thus judge automatically when and where flow slide will stop on slopes with different slope angles, solving the computing difficulties encountered during the Hutchinson's model application, especially in the last decades when computing technique with computers did not develop so rapidly as at present. At last, back analysis for properties of the 1966 flow slide at Aberfan, South Wales is done to test the model and the program, whose results are compared with those as reported by Hutchinson (Can. Geotech. J. 23(2):115-126, 1986). The results show that the program developed by the authors makes the application of Hutchinson's model more correct and easier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.