Abstract

This paper discusses the structure of the flow within the engine inlet of an uninhabited combat air vehicle (UCAV). The UCAV features a top-mounted, serpentine inlet leading to an engine buried within the fuselage. The performance of the inlet is found to depend strongly on a flow separation that occurs within the inlet. Both the time-averaged and the unsteady structure of this separation is studied, and an argument relating the inlet performance to the behavior of this separation is suggested. The results presented in this paper also suggest that there are considerable aerodynamic limitations to further shortening or narrowing of the inlet. Since there are substantial, system level benefits from using a smaller inlet, the case for separated flow control therefore appears clear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.