Abstract

A thorough knowledge of both vascular anatomy and hemodynamics is of high interest for the understanding of the severity of the underlying disease, the therapeutic decision-making and follow-up. In this context, flow-sensitive 3D magnetic resonance imaging (MRI) offers the possibility to simultaneously acquire detailed information about vascular hemodynamics and morphology. Recent methodological progress, extensive validation of the technique and combination with advanced 3D blood flow visualization enables nowadays for a detailed depiction of normal and altered flow characteristics in large arteries such as the thoracic and abdominal aorta. We report the comprehensive MR analysis of hemodynamic alterations in an otherwise healthy patient who underwent a Dacron graft repair after traumatic rupture of the proximal descending aorta. Flow-sensitive time-resolved 3D MRI was employed to analyze the effects of the implantation of a Dacron prosthesis on local vascular hemodynamics. Despite the unsuspicious appearance on angiographic images, 3D blood flow visualization revealed the development of complex and substantially altered systolic blood flow within the graft. These initial findings might in future enrich vascular diagnostics, therapeutic decision making, graft design, or serve as a comprehensive research tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call