Abstract

The purpose of this study was to test the hypothesis that increased flow through coronary arterioles increases endothelial cell nitric oxide synthase (ecNOS) and Cu/Zn superoxide dismutase (SOD) mRNA expression. Single porcine coronary arterioles (ID 100-160 micrometers; pressurized) were cannulated, perfused, and exposed to intraluminal flow sufficient to produce maximal flow-induced dilation of coronary arterioles (high flow; 7.52 +/- 0.22 microliter/min), low flow (0.84 +/- 0.05 microliter/min), or no flow for 2 or 4 h. Mean shear stress was calculated to be 5.7 +/- 1.0 dyn/cm2 for high-flow arterioles and 1. 6 +/- 1.0 dyn/cm2 for low-flow arterioles. At the end of the treatment period, mRNA was isolated from each vessel, and ecNOS and SOD mRNA expression was assessed using a semiquantitative RT-PCR. All data were standardized by coamplifying ecNOS or SOD with glyceraldehyde-3-phosphate dehydrogenase. The results indicate that ecNOS mRNA expression is increased in arterioles exposed to 2 or 4 h of high flow. In contrast, SOD mRNA expression was increased only after 4 h of high flow. Neither gene is induced by exposure to low flow. On the basis of these data, we concluded that ecNOS and SOD mRNA expression is regulated by flow in porcine coronary arterioles. In addition, we concluded that a threshold level of flow and shear stress must be sustained to elicit the upregulation of ecNOS and SOD mRNA expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call