Abstract
<p>Arctic rivers’ flow regime has changed under climate change and its consequences on melting glaciers, thawing permafrost, and precipitation patterns. Reservoirs, hydro-power sites, and water diversions have also changed flow regimes in the Arctic. The flow regime alteration in the Arctic rivers has a strong influence on the conservation and sustainability of the native biodiversity of the riverine ecosystem. The main objective of this paper is to evaluate changes in the (1) magnitude of monthly stream flows, (2) magnitude and duration of annual maxima and minima flows, (3) timing of annual maxima and minima, (4) frequency and duration of high and low pulses, and (5) rate and frequency of daily flows in seven major Arctic Rivers. The analyses provide an important basis to characterize and understand the influence of climate change and anthropogenic activities on the flow regimes in the Arctic. Streamflow observations were obtained from the outlet of the Lena, Yenisei, Kolyma, Ob (Russia), Yukon (USA and Canada), Mackenzie (Canada), and Tana (Norway and Finland) rivers in this study. These rivers are main freshwater suppliers for Arctic Ocean. Of these, five have been regulated and two are considered pristine rivers. In addition, the impact of 16 reservoirs on flow regime in the headwaters and tributaries of Lena, Yenisei, Mackenzie, and Kolyma were evaluated. The annual flow showed an increasing trend in all rivers and with a statistically significant level in Yenisei, Lena, and Mackenzie. Our results also indicated that changes in the observed flow regimes at the outlet stations vary from low to incipient level. Out of 16 reservoirs that were analyzed for flow regimes changes, construction of Krasnoyarsk and Shushenskaya dams on the Yenisei River showed the highest impact on flow regime and flow regime alteration was classified as severe in this river.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.