Abstract
There is evidence of an ongoing alteration of the flow regime owing to climate change forcing, which has resulted in substantial increases in the frequency and magnitude of extreme events such as floods and droughts. Such changes in the flow regime may have major implications in freshwater ecosystems and, in particular, in the organic carbon dynamics in semiarid stream ecosystems. Much is known about the role of extreme flow events on structuring stream ecosystems, but few studies explored the effects of extreme flow events magnitude, timing, and sequence on stream ecosystems. To assess the effect of extreme events on stream organic C dynamics, a simple and flexible modeling approach was applied to simulate the organic carbon dynamics in a simplified river reach. The river reach model was initially calibrated and tested using long-term data for stream water velocity and amount of organic carbon in sediment. After that, multiple scenarios differing in the extreme flow events (floods and droughts) sequence and magnitude were used to simulate the effects of possible flow regime changes on the stream organic carbon dynamics. Initial expectations were that: (i) an increase in the magnitude or frequency of extreme flow events would reduce the amount of organic carbon respired within the simulated river reach, and (ii) relationship between the timings of the extreme flow events and of the litterfall input would influence considerably the effects of the extreme flow events. Results pointed out that: (i) the amount of processed carbon respect the amount entering the ecosystem was affected by extreme events such floods and droughts, but the relevance of those events differed along the year, with a maximal effect during the litterfall period; (ii) extreme event timing rather than the magnitude was more relevant to the stream organic carbon dynamics; and (iii) the amount of respired carbon in the ecosystem could be amplified or reduced depending on event sequence. Increasing awareness of the role of inland waters in the global carbon cycle and the shaping role of hydrology on the stream organic carbon dynamics stress the need to better quantify carbon fluxes and the hydrological controls on these fluxes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.