Abstract

AbstractSeismic waves have been observed to increase the permeability in fractured aquifers. A detailed, predictive understanding of the process has been hampered by a lack of constraint on the primary physical controls. What aspect of the oscillatory forcing is most important in determining the magnitude of the permeability enhancement? Here we present laboratory results showing that flow rate is the primary control on permeability increases in the laboratory. We fractured Berea sandstone samples under triaxial stresses of tens of megapascals and applied dynamic fluid stresses via pore pressure oscillations. In each experiment, we varied either the amplitude or the frequency of the pressure changes. Amplitude and frequency each separately correlated with the resultant permeability increase. More importantly, the permeability changes correlate with the flow rate in each configuration, regardless of whether flow rate variations were driven by varying amplitude or frequency. We also track the permeability evolution during a single set of oscillations by measuring the phase lags (time delays) of successive oscillations. Interpreting the responses with a poroelastic model shows that 80% of the permeability enhancement is reached during the first oscillation and the final permeability enhancement scales exponentially with the imposed change in flow rate integrated over the rock volume. The establishment of flow rate as the primary control on permeability enhancement from seismic waves opens the door to quantitative studies of earthquake‐hydrogeological coupling. The result also suggests that reservoir permeability could be engineered by imposing dynamic stresses and changes in flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.