Abstract

A parabolic numerical analysis procedure has been used to predict the flow in a straight, radial rotating channel of rectangular cross-section, chosen as a simple model of an impeller passage. A two equation turbulence model was employed, with alternative modifications, to include the influence of Coriolis force on turbulent kinetic energy. Alternative Coriolis force terms were evaluated by comparisons in a high-aspect-ratio duct with measured velocity, wall shear stress and turbulent viscosity. Secondary velocity predictions were checked with data from a low-aspect-ratio duct where the Coriolis modification of turbulence was found less influential than the secondary flow in the modification of side wall shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.