Abstract
Stability and antithrombotic functionality of endothelial cells on silicone hollow fibers (SiHFs) are critical in the development of biohybrid artificial lungs. Here we aimed to enhance endothelial cell retention and anti-thrombotic function by low (12 dyn/cm2 , 24 h) fluid shear stress ("flow") preconditioning of endothelial cells seeded on collagen-immobilized SiHFs. The response of endothelial cells without preconditioning (48 h static culture) and with preconditioning (24 h static culture followed by 24 h flow preconditioning) on hollow fibers to high fluid shear stress (30 dyn/cm2 , 1 h) was assessed in a parallel-plate flow chamber. Finite element (FE) modeling was used to simulate shear stress within the flow chamber. We found that collagen immobilization on hollow fibers using carbodiimide bonds provided sufficient stability to high shear stress. Flow preconditioning for 24 h before treatment with high shear stress for 1 h on collagen-immobilized hollow fibers increased cell retention (1.3-fold). The FE model showed that cell flattening due to flow preconditioning reduced maximum shear stress on cells by 32%. Flow preconditioning prior to exposure to high fluid shear stress enhanced the production of nitric oxide (1.3-fold) and prostaglandin I2 (1.2-fold). In conclusion, flow preconditioning of endothelial cells on collagen-immobilized SiHFs enhanced cell retention and antithrombotic function, which could significantly improve current biohybrid artificial lungs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.