Abstract

We establish the relationship between volumes of flow polytopes associated to signed graphs and the Kostant partition function. A special case of this relationship, namely, when the graphs are signless, has been studied in detail by Baldoni and Vergne using techniques of residues. In contrast with their approach, we provide combinatorial proofs inspired by the work of Postnikov and Stanley on flow polytopes. As an application of our results we study a distinguished family of flow polytopes: the Chan-Robbins-Yuen polytopes. Inspired by their beautiful volume formula $\prod_{k=0}^{n-2} Cat(k)$ for the type $A_n$ case, where $Cat(k)$ is the $k^{th}$ Catalan number, we introduce type $C_{n+1}$ and $D_{n+1}$ Chan-Robbins-Yuen polytopes along with intriguing conjectures about their volumes. Nous établissons la relation entre les volumes de polytopes de flux associés aux graphes signés et la fonction de partition de Kostant. Le cas particulier de cette relation où les graphes ne sont pas signés a été étudié en détail par Baldoni et Vergne en utilisant des techniques de résidus. Contrairement à leur approche, nous apportons des preuves combinatoires inspirées par l'analyse de Postnikov et Stanley sur les polytopes de flux. Comme mise en pratique des résultats, nous étudions une famille distinguée de polytopes de flux: les polytopes Chan-Robbins-Yuen. Inspirés par leur belle formule du volume $\prod_{k=0}^{n-2} Cat(k)$ pour le cas de type $A_n$ (où $Cat(k)$ est le $k$-ème nombres de Catalan), nous présentons les polytopes Chan-Robbins-Yuen des types $C_{n +1}$ et $D_{n +1}$ accompagnés de conjectures intéressantes sur leurs volumes.

Highlights

  • In this extended abstract we use combinatorial techniques to establish the relationship between volumes of flow polytopes associated to signed graphs and the Kostant partition function

  • Flow polytopes are associated to loopless graphs in the following way

  • The flow polytope FG of G is the set of all such flows f in R#≥0E(G)

Read more

Summary

Introduction

In this extended abstract we use combinatorial techniques to establish the relationship between volumes of flow polytopes associated to signed graphs and the Kostant partition function. Define the flow polytope FG(a) associated to a signed graph G on the vertex set [n + 1] and the integer vector a = Proposition 10 Given a signed graph G on the vertex set [n + 1], a vector a ∈ Zn+1, and two edges e1 and e2 of G on which one of the reductions (I)-(IV) can be performed yielding the graphs G1, G2, G3, FG(a) = FG1 (a) FG2 (a), FG1 (a) FG2 (a) = FG3 (a), and FG1 (a)◦ FG2 (a)◦ = ∅, where P◦ denotes the interior of the polytope P. We use the reduction rules for signed graphs given, following a specified order, to subdivide flow polytopes. We use this lemma to compute volumes of flow polytopes for both signless graphs H and signed graphs G

Noncrossing trees
Removing vertex i from a signed graph G
Subdivision Lemma
Volume of flow polytopes
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call