Abstract

The distribution and etching rate of flow pattern defects (FPDs) in germanium- doped Czochralski (GCZ) silicon (Si) wafers with light and heavy dopants—either boron (B) or phosphorus (P)—have been investigated. In the lightly doped (both B and P) Czochralski (CZ) Si crystals, the FPD densities in GCZ Si decrease with the increase of Ge concentration. In the heavily B-doped GCZ Si crystals, the FPDs are denser compared with the heavily B-doped CZ Si, whereas the reverse is true in the heavily P-doped GCZ Si and CZ Si crystals. It is also shown that the etching rates in the lightly doped CZ Si crystals can be slightly enlarged by the Ge doping. It is proposed that, in lightly doped GCZ Si, Ge doping could consume free vacancies and thus form high-density but small-sized voids, while the stress compensation induced by B and Ge atoms could increase the vacancy concentration in heavily B-doped GCZ Si, leading to sparse and large-sized voids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call