Abstract
The flow passing over a trapezoidal tab mounted on a flat plate is studied using direct numerical simulation (DNS). Such a tab has been used to generate hairpin-like vortices to enhance cross-stream mixing. We attempt to provide a detailed account of the three-dimensional topology and dynamics of the hairpin vortices in the tab wake. Simulations are conducted for three tab inclination angles at Reynolds number control volumes is employed for the simulations and the results are compared with PIV experimental data. Simulations captured all the experimentally observed near-field flow features including a pair of streamwise co-rotating vortices and its transition to hairpin vortices. Simulation results provide new insight into the vortex dynamics in the tab wake. It is shown that the hairpin vortex is capable of lifting up and entraining vorticity from the local boundary layer, thereby increasing its strength to counter the vorticity diffusion. It is also observed that the turbulence production is mostly accomplished by the hairpin heads/arches, while the highest kinetic energy is associated with hairpin vortex legs. The topological characteristics of the structures and the statistical characteristics of the flow are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.