Abstract
Momentum and heat transfer characteristics of a semi-circular cylinder immersed in unconfined flowing Newtonian fluids have been investigated numerically. The governing equations, namely, continuity, Navier–Stokes and energy, have been solved in the steady flow regime over wide ranges of the Reynolds number (0.01 ⩽ Re ⩽ 39.5) and Prandtl number ( Pr ⩽ 100). Prior to the investigation of drag and heat transfer phenomena, the critical values of the Reynolds number for wake formation (0.55 < Re c < 0.6) and for the onset of vortex shedding (39.5 < Re c < 40) have been identified. The corresponding values of the lift coefficient, drag coefficient, and Strouhal number are also presented. After establishing the limit of the steady flow regime, the influence of the Reynolds number (0.01 ⩽ Re ⩽ 39.5) and Prandtl number ( Pr = 0.72, 1, 10, 50 and 100) on the global flow and heat transfer characteristics have been elucidated. Detailed kinematics of the flow is investigated in terms of the streamline and vorticity profiles and the variation of pressure coefficient in the vicinity of the cylinder. The functional dependence of the individual and total drag coefficients on the Reynolds number is explored. The Nusselt number shows an additional dependence on the Prandtl number. In addition, the isotherm profiles, local Nusselt number ( Nu L ) and average Nusselt number ( Nu) are also presented to analyze the heat transfer characteristic of a semi-circular cylinder in Newtonian media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.