Abstract

We revisit the analytical model for atmospheric boundary-layer flow over a hill covered with a canopy of Finnigan and Belcher (Q J R Meteorol Soc 130:1–29, 2004). Remaining within the overall scope of that analysis we extend in two ways. First we include the impacts of the advection terms within the upper canopy in a simple, but approximate, manner. Second we establish a modification for the associated pressure perturbation. Both extensions allow us to extend the parameter range wherein the analytical framework can be expected to reasonably hold. The within-canopy advection terms act to provide a downstream shift, and decreased magnitude, to the flow perturbations within the canopy as compared to the predictions from the original analysis. Through continuity, similar, but smaller, impacts are seen above the canopy. Together these act to reduce the differences in the streamwise positions of the topographic speed-up seen above and within the canopy. The modified pressure perturbation also acts to decrease the magnitude of the flow perturbations. The predicted topographic influence on the flow is reduced from that given in the original analysis but, importantly, the positions where the topographic influences most strongly affect the flow, and by extension the scalar concentration fields, are also changed. Predictions from the revised analysis are shown to be in good agreement with wind-tunnel data for flow over an isolated narrow ridge covered by a partially dense canopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.