Abstract
We present fully nonlinear time-dependent simulations of the gravity-driven flow of thin wetting liquid films. The computations of the flow on a homogeneous substrate show that the contact line, becomes unstable and develops a finger-like or sawtooth structure [Phys. Rev. Lett. 86, 632 (2001)]. These computations are extended to patterned surfaces, where surface heterogeneities are introduced in a controllable manner. We discuss the conditions that need to be satisfied so that surface properties lead to predictable pattern formation and controllable wetting of the substrate. These conditions are sensitive to the presence of noise which is introduced by random perturbations of the contact line. We analyze this sensitivity and suggest how the effects of noise can be minimized. Applications of these results to technologically relevant flows are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.