Abstract

The flow of KCl solutions through thin quartz capillaries coated with an adsorbed layer of a cationic polyelectrolyte (CPE), poly(dimethyldiallylammonium chloride) (molecular mass M = 500000), is studied. It is found that the adsorption layer is soft and its thickness depends on shear stress generated by the liquid flow through the capillary. The hydrodynamic thickness of the CPE adsorption layer is 80–90 nm at low flow rates of a solution, and it decreases to values comparable with the experimental error at high flow rates. The dried adsorption layer appears to be hydrophobic (the advancing contact angle is about 80°); in these capillaries, the flow rate of a KCl solution is increased that can be interpreted as a solution slip on the surface of CPE adsorption layer. The long-term contact of the dried CPE adsorption layer with KCl solution, probably, results in the swelling of the adsorption layer, which is accompanied by a decrease in the contact angle and ζ potential of the adsorption layer surface as calculated from the streaming potential of the same solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call