Abstract
This study explores the heat and mass transfer of Casson nanofluid flow containing gyrotactic microorganisms past a swirling cylinder. Fluid flow is generated owing to the torsional movement of the cylinder. An analysis is performed in the presence of gyrotactic microorganisms. The effects of chemical reaction, magnetohydrodynamics, heat generation/absorption, and zero mass flux condition are also considered. The Cattaneo–Christov heat flux model is initiated instead of conventional Fourier heat flux. Apposite transformations are betrothed to attain the coupled system of equations. The numerical solution is developed from the novel mathematical model via bvp4c function utilizing MATLAB software. Numerous graphs and tables are established to portray the inspiration of embroiled parameters on the flow distributions. To corroborate the presented results; a comparison to an already done published paper is also made. An excellent synchronization between the two results is obtained thus endorsing the presented model. Also, form the graphical structures and numerically erected tables, it is professed that concentration of the fluid is lessened owing to an upsurge in values of Reynolds number and Brownian motion parameter. Furthermore, diminishing density of microorganism is perceived for mounting estimates of bioconvection Peclet number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.