Abstract

AbstractIn this paper we consider a fluid whose viscosity depends on both the mean normal stress and the shear rate flowing down an inclined plane. Such flows have relevance to geophysical flows. In order to make the problem amenable to analysis, we consider a generalization of the lubrication approximation for the flows of such fluids based on the development of the generalization of the Reynolds equation for such flows. This allows us to obtain analytical solutions to the problem of propagation of waves in a fluid flowing down an inclined plane. We find that the dependence of the viscosity on the pressure can increase the breaking time by an order of magnitude or more than that for the classical Newtonian fluid. In the viscous regime, we find both upslope and downslope travelling wave solutions, and these solutions are quantitatively and qualitatively different from the classical Newtonian solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.