Abstract

In order to analyze the separation behavior of nonmetallic inclusion particles from liquid steel by imposition of DC electromagnetic (em) field, a numerical calculation was performed to investigate forces exerting on the particles. As the fundamental study, a system of two particles was selected for the calculation. Electromagnetically driven flow (em flow) around two particles and the em migration force exerted on them were analyzed. The em-flow states are dependent on configurations of the two particles. A penetrating flow exists between the particles, if the directions of two particles in a row is either parallel to the current (case 1) or to the magnetic field (case 2). On the other hand, the penetrating flow is much less when the row direction is parallel to the em force (case 3). The contribution of the viscous stress to the migration force is smaller than the em pressure by an order of magnitude; however, its effect is not negligible. Because of the penetrating flow, the em migration force is affected more in cases 1 and 2 than in case 3. Both attractive and negative interaction forces between two particles are negligibly small in the three cases. So was the case of two particles in a cell through which a downward flow exists (in a balanced state between the em flow and the forced convection). Interaction forces between two particles and the migration force dependence on the interparticle distance are discussed based on the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.