Abstract

The Runge-Kutta method of 6th-order has been employed in this paper to analyze the flow of Casson nanofluid along permeable exponentially stretching cylinder. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. The aim of the paper is to investigate the effects of different parameters such as Casson fluid parameter, slip parameter, suction parameter, Prandtl number, Lewis number, Brownian motion parameter, and thermophoresis parameter, with the variation of mass concentration profile. Numerical results are attained using a renowned numerical scheme shooting technique and for the authenticity of present methodlogy, the results are verified with earlier open text.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call