Abstract

The stretching surface is assumed to be stretched impulsively from rest and the effect of inertia of the liquid is considered. Equations describing the laminar flow on the stretching surface are solved analytically by using the singular perturbation technique and the method of characteristics is used to obtain an analytic expression for film thickness. The results show that the final film thickness is independent of the amount of liquid distributed initially and on the initial film thickness be it uniform or nonuniform. It is also shown that the forceful stretching produces quicker thinning of the film on the stretching surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.