Abstract

The flow-noise induced by small gaps underneath low-Mach-number turbulent boundary layers at Reθ = 4755 is studied using large-eddy simulation and Lighthill's theory. The gap leading-edge height is 13% of the boundary-layer thickness, and the gap width and trailing-edge height are varied to investigate their effects on surface-pressure fluctuations and sound generation. The maximum surface pressure fluctuations, which increase with gap width and trailing-edge height, occur at the trailing edge or near the reattachment point if there is separation from the trailing edge. The downstream recovery towards an equilibrium boundary layer is significantly faster for gap flows compared to step flows, and the recovery distance scales with the reattachment length for gaps with trailing-edge separation. The acoustic field is dominated by the forward-facing step in the gap and resembles forward-step sound for wide gaps and/or asymmetric gaps with trailing edge higher than leading edge. In these cases, the dominant acoustic source mechanisms are the impingement of the separated shear layer from the leading edge onto the trailing edge and the unsteady separation from the trailing edge, coupled with edge diffraction. For narrow and symmetric gaps, the destructive interference of sound from the leading and trailing edges causes a significant decline in low-frequency sound and thereby creates a broad spectral peak in the mid-frequency range. The effects of gap acoustic non-compactness and free-stream convection are investigated by comparing solutions based on a compact gap Green's function with those from a boundary-element calculation. They are found to be negligible at the typical hydroacoustc Mach number of 0.01, but become significant at Mach numbers as low as 0.1 and moderately high frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.