Abstract

The aircraft temperature control system (TCS) with multiple temperature zones can provide personalized thermal regulation for crews and passengers, and it also increases the nonlinearity and coupling of the system dynamic responses. For predicting the dynamic response of the TCS with multiple temperature zones and optimizing the control effect, this paper presents a general dynamic simulation model of the TCS. A flow network consisting of pressure nodes and throttling units is developed to describe the system architecture for arbitrary temperature zones, and has the capability to compute pressure and flowrate transients in the system. Based on the flow network, component level sub-models are developed, and a simulation framework is developed incorporating the PID control algorithm. The model predictions show good agreement with the pull-down test data under hot day condition, with average deviations of 0.55 °C, 0.83 °C, and 0.91 °C for the cockpit, cabin and mixing chamber temperatures, respectively. The dynamic performance of a TCS with multiple temperature zones are further investigated for typical cooling/heating conditions and an entire flight process. The results indicate that the present model can sufficiently acquire the dynamic characteristics of TCS that provide industrial sight towards full understanding and control design of the TCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.