Abstract

Three-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed scoured bed with a submerged spur dike. Three-dimensional flow velocities were measured at 3,484 positions around the trapezoidal shaped submerged model spur dike. General velocity distributions and detailed near field flow structures were revealed by the measurement. Clear differences were revealed between flow over fixed flat and scoured beds. Strong lateral flows were the dominant cause of the observed local scour. Shear stresses were higher for the scoured bed than in the flat bed case. Decreasing rates of scour as the scour hole developed were attributed to increases in critical shear stress in the scour holes caused by the increase in the length and magnitude of adverse slopes associated with the two main scour holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call