Abstract

Assuming 1D flow in pressurized systems, transient analyses can be performed using a number of well-established models. In the short-term timescale, practical problems are solved using either elastic or rigid models, whereas in the long-term scale a quasi-static model is more convenient. These models can be obtained by simplifying the general equations for flow of an elastic fluid. A brief overview of these models is presented, with the major emphasis being on the use of dimensionless parameters to define the range of their applicability for simple hydraulic systems. Guidelines for applicability are presented in the form of graphs and equations. The effects of resistance, inertia, and elasticity may vary in relative importance under different circumstances. The present analysis provides a unified approach to represent each of these effects using a different parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.