Abstract

The isothermal swirling flow in the vicinity of a model oxy-fuel industrial burner is analyzed with laser-Doppler velocimetry together with laser-sheet visualization. The burner consists of a central axisymmetric swirling jet surrounded by sixteen circular jets, simulating the injection of oxygen in practical burners. The results extend those obtained for non-swirling flows, and presented in Part 1 of this paper, to the analysis of the dependence of the mixing efficiency of the burner assembly upon the swirl motion of the central jet and have the necessary detail to allow to assess the accuracy of calculation procedures of the flow in industrial burners. It is shown that swirl attenuates the three-dimensional structure typical of multijet flows in such a way that turbulence production and transport in the near burner zone are dominated by swirl-induced processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.