Abstract

A forward-swept fan, designated the Quiet High Speed Fan (QHSF), was tested in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel to investigate its noise reduction relative to a baseline fan of the same aerodynamic performance. The objective of the Quiet High Speed Fan was a 6-dB reduction in the Effective Perceived Noise Level relative to the baseline fan at the takeoff condition. The intent of the Quiet High Speed Fan design was to provide both a multiple pure tone noise reduction from the forward sweep of the fan rotor and a rotor-stator interaction blade passing tone noise reduction from a leaned stator. The tunnel noise data indicted that the Quiet High Speed Fan was quieter than the baseline fan for a significant portion of the operating line and was 6 dB quieter near the takeoff condition. Although reductions in the multiple pure tones were observed, the vast majority of the EPNdB reduction was a result of the reduction in the blade passing tone and its harmonics. Laser Doppler Velocimetry (LDV) and shroud unsteady pressure measurement data were obtained upstream of the QHSF and baseline rotors to improve the understanding of the shocks which propagate upstream of the two fans when they are operated at high speeds. The flow phenomena that produce multiple pure tone noise is discussed and compared to measurements of the fan acoustic inlet modes and the far field noise signature of the fan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call