Abstract

Flow manipulation in sweeping microchip capillary electrophoresis (CE) is complicated by the free liquid communication between channels at the intersection, especially when the electroosmotic flows are mismatched in the main channel. Sweeping in traditional CE with cationic micelles is an effective way to concentrate anionic analytes. However, it is a challenge to transfer this method onto microchip CE because the dynamic coating process on capillary walls by cationic surfactants is interrupted when the sample solution free of surfactants is introduced into the microchip channels. This situation presents a difficulty in the sample loading, injection and dispensing processes. By adding surfactant at a concentration around the critical micelle concentration and by properly designing the voltage configuration, the flows in a microchip were effectively manipulated and this sweeping method was successfully moved to microchip CE using tetradecyltrimethylammonium bromide (TTAB). The sweeping effect of cationic surfactant in the sample solution was discussed theoretically and studied experimentally in traditional CE. The flows in a microchip were monitored with fluorescence imaging, and the injection and sweeping processes were studied by locating the detection point along the separation channel. A detection enhancement of up to 500-fold was achieved for 5-carboxyfluorescein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.