Abstract

The performance of a plate heat exchanger (PHE) is severely influenced by non-uniform distribution of flow among its channels. Not only the PHEs, but many other process equipment needs uniform flow distribution for their optimum performance. Flow maldistribution (non-uniform distribution) is a common design problem which always puzzles process equipment designers. Being important design parameters, it has been investigated by several researchers and case based solution has been proposed and documented. Present numerical work is intended to target this aspect of the problem of PHEs but starts with a general investigation with simple multichannel geometry. The numerical setup consists of two headers having multiple channels for U-and Z-turn flow configuration under multichannel geometry and a simplified PHE for plate heat exchanger simulation. The problem has been investigated from hydrodynamic and thermodynamic view point. For hydrodynamic study, flow has been varied for Reynolds number 120 to 17600. It has been found that channel flow goes on reducing along downstream side. In thermal study the effect of wall temperature on air flow mal distribution has been investigated. Numerical results have been validated with the experimental results. Investigation reveals new features of flow mal-distribution which is helpful in better understanding of associated mal-distribution physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call