Abstract

Together with biochemical factors, fluid mechanical factors play a role in atherogenesis and the deposition of blood platelets at bends and bifurcations in human arteries. Hence, flow patterns were investigated in a simplified 3-dimensional model of a human renal artery bifurcation using Newtonian (aqueous glycerol) and non-Newtonian (aqueous solution of polyacrylamide) fluids. Studies were carried out in steady as well as pulsatile flow at inflow Reynolds numbers of 498 and 951 with flow rate ratios main tube V1: right branch V4: left branch V3 of 1: 0.25: 0.25 and 1: 0.18: 0.18 respectively. The velocity distribution proximal and distal to the bifurcations was measured using a laser-Doppler anemometer. In steady flow, zones of flow separation and reverse flow were observed distal to the bifurcations. In pulsatile flow using non-Newtonian fluids, there was a significant enlargement of these zones. Differences between the Newtonian and non-Newtonian fluids occurred especially distal to the bifurcations. Shear stresses along all measuring positions were computed from the velocity gradients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.