Abstract

A new sorbent, maleic acid grafted polytetrafluoroethylene fiber (MA-PTFE), was prepared and evaluated for on-line solid-phase extraction coupled with inductively coupled plasma mass spectrometry (ICP-MS) for fast, selective, and sensitive determination of (ultra)trace rare earth elements (REEs) in environmental samples. The REEs in aqueous samples at pH = 3.0 were selectively extracted onto a microcolumn packed with the MA-PTFE fiber, and the adsorbed REEs were subsequently eluted on-line with 0.9 mol l(-1) HNO3 for ICP-MS determination. The new sorbent extraction system allows effective preconcentration and separation of the REEs from the major matrix constituents of alkali and alkali earth elements, particularly their separation from barium that produces considerable isobaric interferences of 134Ba16O1H+, 135Ba16O+, 136Ba16O1H+, and 137Ba16O+ on 151Eu+ and 153Eu+. With the use of a sample loading flow rate of 7.4 ml min(-1) for 120 s preconcentration, enhancement factors of 69-97 and detection limits (3s) of 1-20 pg l(-1) were achieved at a sample throughput of 22 samples h(-1). The precision (RSD) for 16 replicate determinations of 50 ng l(-1) of REEs was 0.5-1.1%. The developed method was successfully applied to the determination of (ultra)trace REEs in sediment, soil, and seawater samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call