Abstract
The phenomenon of flow-induced vibration (FIV) over a square cylinder at Reynolds numbers, Re = (3.6–12.5 × 103) is numerically studied. This current study provides a detailed explanation of the behaviour of transverse motion of square cylinder with the mass damping ratio, mζ* = 2.48. The computation of FIV is conducted by numerical simulation based on the Unsteady Reynolds Navier-Stokes (URANS) flow field using OpenFOAM software. The first part of the numerical simulation consists of an isolated square cylinder to validate the solution with previous studies. The computation of FIV with a total number of cells, N = 101,662 have shown a comparable pattern of amplitude curve. The coexistence of vortex-induced vibration (VIV) and galloping is observed for a single isolated cylinder. A downstream flat plate is introduced in the second part of the work. Different gaps separation between the cylinder and flat plate (0.1 ⩽G/D ⩽ 3) are simulated. Based on the amplitude curve against reduced velocities 4 ⩽UR⩽ 20, four regimes are identified. According to the power estimation, the optimum gap separation is G/D = 0.1. The harnessed power is higher than a single isolated square cylinder while preserving the robustness for the remote harvesting purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.