Abstract

Linear viscoelastic properties are found to be a sensitive measure of flow-induced structural changes in a block copolymer. Styrene-butadiene-styrene block copolymer (SBS) with 26% polystyrene (PS) forms a macrostructure in the quiescent state with grains of the order of 1–10 μm. Within each grain, phase separation gives rise to a regular two-phase microstructure with cylindrical PS domains with radius of the order of 200 A. Large-amplitude oscillatory shear (γ = 4.5) at temperatures between 139 and 181°C was applied to after the grain structure with the objectives of removing the discontinuities at the grain boundaries and of aligning the domains into a continuous ultrastructure. The SBS behaved like a solid (tan δ 1) after shear modification. This change expressed itself in the removal of the long relaxation times from the linear viscoelastic spectrum; the intermediate and low relaxation times were not affected by the shear modification. The viscoelastic spectrum slowly recovered during annealing with recovery times of the order of the longest relaxation time of the quiescent structure. Birefringence studies showed that the SBS did not recover into its original grain structure but into a highly oriented domain structure. The discontinuities at the grain boundaries could not be removed completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.