Abstract
In this work, we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology) to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of beta-casein and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (etas) varies greatly with the surface pressure. In general, the greater the surface pressure, the greater the values of etas. At higher surface pressures, collapsed beta-casein residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography of monoglyceride and beta-casein domains, on one hand, and a segregation between domains of the film-forming components, on the other hand, were also observed. The displacement of the beta-casein by the monoglycerides is facilitated under shear conditions, especially for beta-casein-monoolein mixed films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.