Abstract

The emergence of microfluidic devices integrated with nanostructures enables highly efficient, flexible and controllable biosensing, among which zinc oxide (ZnO) nanostructure-based fluorescence detection has been demonstrated to be a promising methodology due to its high electrical point and unique fluorescence enhancement properties. The optimization of microfluidic synthesis of ZnO nanostructures for biosensing on chip has been in demand due to its low cost and high efficiency, but still the flow-induced growth of ZnO nanostructures is not extensively studied. Here, we report a simple and versatile strategy that could manipulate the local flow field by creating periodically arranged micropillars within a straight microchannel. We have explored the effects of perfusion speed and flow direction of seed solution, localized flow variation of growth solution and growth time on the morphology of nanostructures. This provided a comprehensive understanding which governs nanostructure fabrication controlled by flow. The results demonstrated that localized flow in microfluidic devices was essential for the initiation and growth of zinc oxide crystals, enabling precise control over their properties and morphology. Furthermore, a model protein was used to demonstrate the intrinsic fluorescence enhancement of ZnO nanostructures as an example to reveal the morphology-related enhancement properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.