Abstract

Low Reynolds number flow-induced alterations of permeability of random packing of mono-sized spheres is studied. The number of spheres is several thousands and the porosities ranges between 0.4 and 0.6. The change of permeability is obtained for elastic deformations of the positions of the spheres using either of two methods. Each sphere is elastically attached to single points or the spheres that are connected via an elastic porous network. The system of spheres is divided into smaller volumes with Voronoi diagrams and the flow is derived by usage of a dual stream function. The local saturated flow fields are approximated as for close packed spheres and the overall flow pattern is obtained by minimising the dissipation rate of energy. The results show that the permeability for large random systems increases as a function of velocity and thus the deformation. The alteration is, however, much less than for two-dimensional cases like parallel cylinders. The relative increase in permeability becomes larger as the porosity increases from 0.4 to 0.6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.