Abstract
AbstractCrystallization during microinjection molding is investigated relative to process conditions. Modulus and hardness of the skin layer are higher than the core layer, regardless of core structure. Young's modulus, strain at break and yield stress all increase with an increase of skin ratio. The relationship between process, morphology and mechanical properties is studied for micro products. By using in‐line process monitoring, flow induced crystallization is characterized by shear stress and apparent specific work. Shear stress is shown to be a good candidate to characterize the formation of highly oriented structures under actual microinjection molding processes. This may provide a method for in‐line control of morphology development, and then final properties, by controlling the flow conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.