Abstract

The swimming sperm of many external fertilizing marine organisms face complex fluid flows during their search for egg cells. Aided by chemotaxis, relatively weak flows are known to enhance sperm-egg fertilization rates through hydrodynamic guidance. However, strong flows have the potential to mechanically inhibit flagellar motility through elastohydrodynamic interactions-a phenomenon that remains poorly understood. Here we explore the effects of flow on the buckling dynamics of sperm flagella in an extensional flow through detailed numerical simulations, which are informed by microfluidic experiments and high-speed imaging. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, Sp, which represents the ratio of viscous force to elastic force. For nonmotile sperm, the maximum buckling curvature and the number of buckling locations, or buckling mode, increase with increasing sperm number. In contrast, motile sperm exhibit a local flagellar curvature due to the propagation of bending waves along the flagellum. In compressional flow, this preexisting curvature acts as a precursor for buckling, which enhances local curvature without creating new buckling modes and leads to asymmetric beating. However, in extensional flow, flagellar beating remains symmetric with a smaller head yawing amplitude due to tensile forces. The flagellar beating frequency also influences the maximum curvature of motile sperm by facilitating sperm reorientation relative to the compressional axis of the flow near stagnation points. These combined simulations and experiments directly illustrate the microscopic elastohydrodynamic mechanisms responsible for inhibiting flagellar motility in flow and have possible implications for our understanding of external fertilization in dynamic marine systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call