Abstract

The local geometry of a bifurcation has been hypothesized to be a potential geometrical risk factor for the development of atherosclerosis. While flow division and branch area ratios clearly affect the flow field, the importance of the flow divider shape is not as clear. A fast spectral element computational fluid mechanics (CFD) solver was used to simulate flow through 90 ° T-bifurcations with three different flow divider shapes. Other factors, such as flow partition, area ratio, and bifurcation angle, were kept constant. A Reynolds number range of 15 to 350 was studied to bracket experimental results in the literature. The variation in the sharpness of the corners had a dramatic effect on both the flow field and wall shear stress distribution in the side branch, but little effect on the flow in the main tube. The magnitude of reverse velocities and wall shear stress in the side branch increased linearly over a physiological range of Reynolds number and corner shape. This paper verifies the accuracy and usefulness of spectral element CFD in studying three-dimensional hemodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.