Abstract

AbstractA two-dimensional steady potential flow theory is applied to calculate the flow in an open channel with complex solid boundaries. The boundary integral equations for the problem under investigation are first derived in an auxiliary plane by taking the Cauchy integral principal values. To overcome the difficulties of a nonlinear curvilinear solid boundary character and free water surface not being known a priori, the boundary integral equations are transformed to the physical plane by substituting the integral variables. As such, the proposed approach has the following advantages: (1) the angle of the curvilinear solid boundary as well as the location of free water surface (initially assumed) is a known function of coordinates in physical plane; and (2) the meshes can be flexibly assigned on the solid and free water surface boundaries along which the integration is performed. This avoids the difficulty of the traditional potential flow theory, which seeks a function to conformally map the geometry ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.