Abstract

The unsteady flow of a viscous, incompressible fluid in a channel with a moving indentation in one wall has been studied by numerical solution of the Navier-Stokes equations. The solution was obtained in stream-function-vorticity form using finite differences. Leapfrog time-differencing and the Dufort-Frankel substitution were used in the vorticity transport equation, and the Poisson equation for the stream function was solved by multigrid methods. In order to resolve the boundary-condition difficulties arising from the presence of the moving wall, a time-dependent transformation was applied, complicating the equations but ensuring that the computational domain remained a fixed rectangle.Downstream of the moving indentation, the flow in the centre of the channel becomes wavy, and eddies are formed between the wave crests/troughs and the walls. Subsequently, certain of these eddies ‘double’, that is a second vortex centre appears upstream of the first. These observations are qualitatively similar to previous experimental findings (Stephanoff et al. 1983, and Pedley & Stephanoff 1985), and quantitative comparisons are also shown to be favourable. Plots of vorticity contours confirm that the wave generation process is essentially inviscid and reveal the vorticity dynamics of eddy doubling, in which viscous diffusion and advection are important at different stages. The maximum magnitude of wall vorticity is found to be much larger than in quasi-steady flow, with possibly important biomedical implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call