Abstract

The role of kinetic helicity in small-scale fast dynamo action is investigated by employing a simple statistical model for the underlying flow with statistics that are Gaussian distributed, temporally delta-correlated and spatially homogeneous and isotropic. In order to focus on small-scale dynamo action we restrict our attention to flows possessing no net kinetic helicity. With the help of a diagrammatic technique and a numerical calculation we show that the dynamo growth rate is independent of the kinetic helicity as the magnetic Reynolds number R m → ∞. It is indicated that the latter enhances the growth of the magnetic energy only for finite R m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.