Abstract

We present an interactive method that manipulates perceived object shape from a single input color image thanks to a warping technique implemented on the GPU. The key idea is to give the illusion of shape sharpening or rounding by exaggerating orientation patterns in the image that are strongly correlated to surface curvature. We build on a growing literature in both human and computer vision showing the importance of orientation patterns in the communication of shape, which we complement with mathematical relationships and a statistical image analysis revealing that structure tensors are indeed strongly correlated to surface shape features. We then rely on these correlations to introduce a flow-guided image warping algorithm, which in effect exaggerates orientation patterns involved in shape perception. We evaluate our technique by 1) comparing it to ground truth shape deformations, and 2) performing two perceptual experiments to assess its effects. Our algorithm produces convincing shape manipulation results on synthetic images and photographs, for various materials and lighting environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call